
Lab	7:		Beat	Detection	on	Pyboard	 Imperial	College	London	

V2.0	-	PYK	Cheung,	7	March	2018	 	 	 	 Lab	7		-		 1	

Dyson	School	of	Design	Engineering	

Imperial	College	London	

DE2.3			Electronics	2	

Lab	Experiment	7:	Basic	Beat	Detection	implementation	

(webpage:	http://www.ee.ic.ac.uk/pcheung/teaching/DE2_EE/)		

INTRODUCTION	

In	order	assist	you	to	make	progress	on	the	project,	I	here	provide	you	with	a	skeleton	
program	“beat_detect_0.py”	for	real-time	beat	detection	running	on	Pybench	(in	
MicroPython).		This	program	works	reasonably	well	for	the	music	“Staying	Alive”.		
Your	job	is	to	try	to	improve	this	basic	program	to	obtain	a	better	performing	one.		This	Lab	session	
should	help	you	in	achieving	milestone	2	and	3.	

CONTEXT	

Our	goal	is	to	run	real-time	code	in	MicroPython	using	Pybench	to	detect	when	a	beat	occurs.			In	this	
version,	the	blue	LED	is	flashed	whenever	a	beat	is	detected.		You	can	substitute	flashing	the	LED	with	a	
dancing	step	(or	do	both!).		

Debugging	interrupt	driven	program	is	difficult.		I	found	that	some	students	are	struggling	to	get	a	basic	
version	of	the	code	running	without	error	on	Pybench.		Given	the	number	of	deadlines	you	have,	I	
decided	to	provide	you	with	various	“basic”	version	of	code	from	which	you	can	learn.		Your	challenge	is	
to	make	my	implementation	better.	

You	can	download	this	program	from	the	course	webpage.	

EXPLANATION	

Lines	19-22:	import	packages	
and	classes	used.	

Lines	26,27:	Micropython	
requires	this	if	you	use	
interrupts	anywhere	in	your	
program.	

Lines	29-40:		Construct	various	
hardware	objects	used	later	in	
this	program.	

MIC_OFFSET	is	the	microphone	
reading	from	the	ADC	when	it	is	
quiet.		ADC	converts	0	–	3.3V	
range	to	0	–	4095	(12-bit	ADC).		
Microphone	amplifier	is	at	a	
voltage	that	converts	to	1523	on	
my	Pybench.			

You	may	have	a	different	offset	
value	for	your	Pybench.	



Lab	7:		Beat	Detection	on	Pyboard	 Imperial	College	London	

V2.0	-	PYK	Cheung,	7	March	2018	 	 	 	 Lab	7		-		 2	

	

Lines	42:	N	is	the	number	of	
samples	we	acquire	in	each	
energy	window.	160	sample	is	
equivalent	to	20msec	window.	
This	is	one	“epoch”.	

Line	43:	This	is	the	way	to	
reserve	memory	for	s_buf,	the	
sample	buffer.		There	are	N	
locations	in	the	buffer.	‘H’	
means	data	format	is	half	
integer	or	16-bit.		Capital	H	
means	it	is	unsigned	(ADC	
returns	value	0	–	4095).	s_buf	
also	initialized	to	0.	

Lines	47	–	50:	Flash	blue	LED.		

Lines	52	–	57:	Compute	energy	
in	a	20msec	epoch.	For	each	
sample,	we	also	remove	the	dc	
offset	first.	

Lines	61	–	69:	This	is	the	
interrupt	service	routine	that	
get	executed	automatically,	
once	every	sample	period.		

	

	It	stores	samples	in	s_buf.		ISR	should	be	as	short	as	possible.	ptr	is	the	index	to	s_buf,	where	the	next	sample	
should	be	stored.		It	goes	from	0	to	N-1,	and	get	incremented	each	time	the	ISR	is	called.			When	ptr	reaches	N,	it	
get	reset	to	0,	and	the	“buffer_full”	flag	is	then	set	to	tell	the	main	program	loop	that	we	now	have	N	signal	
samples	in	s_buf.	

Line	72:		Initialize	timer	7	so	that	its	times	out	every	1/8000	sec.	This	is	used	as	the	sampling	clock.		Each	sampling	
period	is	now	127	microseconds.	

Line	73:		Set	up	the	interrupt	for	timer	7.		Whenever	timer	7	times	out,	i.e.	125	microseconds	has	elapsed,	the	
routine	“isr_sampling”	is	called.		Interrupt	service	routine	in	Python	is	called	“callback”	function.	

	 	



Lab	7:		Beat	Detection	on	Pyboard	 Imperial	College	London	

V2.0	-	PYK	Cheung,	7	March	2018	 	 	 	 Lab	7		-		 3	

Line	77:	M	is	the	number	of	
instantaneous	energy	values	to	
average	over	to	obtain	the	
average	local	energy.	

Line	78:	BEAT_THRESHOLD	is	
the	ratio	of	instantaneous	
energy	/	local	average	energy	
beyond	which	a	beat	is	
detected.	

Line	81:	e_ptr	is	the	index	for	a	
buffer	storing	M	instant	energy	
values.	

Line	82:	e_buf	is	the	instant	
energy	buffer	of	length	M.	Data	
format	is	a	regular	unsigned	
integer.	‘L’	is	normal	integer,	i.e.	
32-bits,	uppercase	is	unsigned.	

Lines	86	–	104:	Main	program	
loop.		This	is	what	all	real-time	
program	would	look	like.		It	
loops	around	forever.		

Line	87:	The	time	it	takes	to	go	around	the	loop	once	is	determined	by	the	buffer_full	flag,	which	is	set	in	the	
sampling	interrupt	service	routine	once	the	buffer	is	full.		The	buffer	has	N=160	locations,	and	the	sampling	
period	is	1/8000	=	125	µsec.			Therefore,	the	loop	goes	around	once	every	20msec.	

Line	90:	Compute	energy	in	sample	buffer	–	one	epoch.	This	returns	the	instantaneous	energy	E.	

	Line	93:	This	is	a	clever	trick!		We	want	to	find	the	average	energy	of	the	past	M	instant	energy	values.		We	could	
do	this	by	summing	up	what’s	stored	in	e_buf[0]	to	e_buf[M-1].			That	takes	M-1	adds.		However,	we	can	also	
keep	a	running	sum	of	instant	energy	sum_energy,	take	away	the	earliest	instant	energy	value,	and	then	add	the	
current	E.		This	takes	only	two	adds	(or	subtract)	–	much	quicker!	

Line	94:	Overwrite	the	earliest	sample	in	buffer	with	this	new	instantaneous	energy	E.		e_ptr	is	pointing	to	(i.e.	
providing	the	index	for)	the	oldest	sample	in	e_buf[].	

Line	95:	Update	e_ptr	to	move	to	the	next	oldest	sample,	soon	to	be	overwritten.		The	“%	M”	operation	is	
modulo	M	(divide	by	M	and	get	the	remainder).		It	is	a	method	to	increment	the	index	value,	make	sure	that	this	
value	stay	within	0	to	M-1,	and	wrap	it	around	whenever	it	reaches	M.		In	that	way,	e_buf[	]	will	always	have	the	
past	M	instant	energy	values,	and	this	buffer	get	updated	each	echo	(20msec)	period.	

Line	98:	Calculate	the	ratio	c,	instantaneous	energy	/	average	energy.		sum_energy	has	the	total	energy	over	50	
epochs.		sum_energy/M	is	the	average.	

Line	100:	Check	that	the	elapsed	time	is	500msec	or	more	since	detecting	the	last	beat.		We	know	that	“Staying	
Alive”	has	a	beat	period	of	around	570msec	from	your	MATLAB	analysis.		So	we	only	expect	the	next	beat	
500msec	or	later.	

Line	101:	Beat	is	detected	only	if	c	>	some	threshold.	Change	the	threshold	will	affect	accuracy	of	detection.	

Line	104:	Reset	the	buffer_full	status	flag,	ready	for	another	20msec	period	



Lab	7:		Beat	Detection	on	Pyboard	 Imperial	College	London	

V2.0	-	PYK	Cheung,	7	March	2018	 	 	 	 Lab	7		-		 4	

WHAT	IS	NEXT?	

To	make	the	mini-Segway	dance	to	music,	you	would	need	to	have	created	the	dance	routine	in	the	form	of	steps	
encoded	in	ASCII	characters.		The	dance	routine	can	be	created	manually	or	automatically.		You	can	then	replace	
“flash()”	with	the	appropriate	function	to	move	the	mini-Segway.		With	the	stabilizer	installed,	your	Segway	
should	dance	to	the	music.	

For	a	different	song,	the	beat	period	would	be	different.		You	would	need	to	change	the	program	so	that	it	looks	
for	a	beat	earlier	or	later	than	500msec	in	the	current	basic	program.	

	

	


